Pages Menu

Recent News

Professional Involvement in Ophthalmology iPhone Application Development: An Update

Posted on Dec 4, 2018 in Articles, Review | 0 comments

Professional Involvement in Ophthalmology iPhone Application Development: An Update

Louis Stevenson, MBBS1

1 The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia 3002

The author is not the recipient of a research scholarship.

Corresponding author: Louis.Stevenson@eyeandear.org.au

Journal MTM 7:2:1–6, 2018

doi:10.7309/jmtm.7.2.1


Background: Smartphone technology and related applications are increasingly prevalent in the field of medicine and ophthalmology, offering a wide range of hand-held capabilities not previously available. While these technologies have enormous potential, many apps are developed without the involvement of qualified professionals leading to concerns about their quality and validity.

Aims: To assess iPhone® applications aimed at eye care professionals for qualified professional involvement in their development.

Methods: Applications were identified by searching the Apple® (Cupertino, CA) iTunes® Store using the terms ‘ophthalmology’ and ‘ophthalmologist’ in addition to a number of common eye conditions outlined by the Centers for Disease Control and Prevention. Applications were then assessed for category of application, intended audience, documented involvement of medical professionals in application development, price, user rating and date of publication.

Results: In total, 152 applications were identified across 12 categories. Applications were found to target eye-care professionals (ophthalmologists and non-ophthalmologists) (32.3%), ophthalmologists specifically (32.3%), non-ophthalmology eye-care professionals (3.3%) and patients (34.2%). Overall, 36 (23.7%) applications had clearly documented professional involvement in their development.

Conclusions: There continues to be a low level of professional involvement in the development of ophthalmology based iPhone® applications. This is concerning given the growing prevalence of these technologies and their enormous potential. It is therefore incumbent on clinicians to be informed about the applications they use and promote high quality applications developed with professional expertise.

Disclosures: All authors have completed the Unified Competing Interest form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous 3 years; no other relationships or activities that could appear to have influenced the submitted work.

Keywords: ‘Ophthalmology’, ‘smartphone’, ‘technology’, ‘ophthalmologist’, ‘telemedicine’.


Introduction

Smartphones are mobile, handheld devices, with functional capabilities similar to those of laptop computers.1 These devices represent a significant technological milestone and provide users with a diverse range of easily accessible, handheld capabilities not previously available.

The field of medicine has increasingly been subject to the influence of smartphones and their applications (apps). Between 2001 and 2013, smartphone use among health professionals rose from 30%2 to 86%3, highlighting the dramatic uptake of this technology. Accompanying the rise in smartphone use has been a similarly dramatic increase in the number of health related apps.4, 5 The potential benefits of the technology are extensive and range from increased patient compliance, data management, displacement of old expensive technologies and increased communication capabilities.2

The specialty of ophthalmology has also been impacted by the development of smartphones, with a diverse range of ophthalmology themed apps now available.6 These apps target a wide range of audiences from ophthalmologists and non-ophthalmology eye care professionals, through to medical researchers and healthcare consumers.6, 7 The range of functions typically performed by these apps fall into several broad categories including; clinical examination and assessment tools, medical administration, professional and patient education, and clinical calculators.2, 58 The areas of telemedicine and teleophthalmology have also been impacted by smartphones9 with a Brazilian study finding smartphone based photography to be both sensitive and specific in the diagnosis of emergency eye conditions when used as a teleconsultation tool.10 These results are highly promising and have the potential to improve access to healthcare in isolated populations.

While these capabilities are unprecedented and offer enormous potential, there is concern that their utility is undermined by low quality app development and a lack of evidence supporting their use.2 A 2014 report by Cheng et al. found that less than one third of ophthalmology iPhone® apps available on the Apple® iTunes® Store, had documented medical input in their development.7

Such concerns are not limited to ophthalmology with similar findings having been made across other disciplines. A 2011 review of smoking cessation apps found many apps deviated significantly from relevant clinical guidelines11, while a 2016 review of health related smartphone apps found that the majority of apps targeting clinical practice lacked scientific evidence underpinning their use.12 Furthermore, apps are difficult to regulate and a number of privacy issues related to their use have been raised.13

Given these findings, a major challenge now facing clinicians, researchers, and consumers is harnessing the potential of this technology while avoiding its shortcomings. This report provides an update on the quality of ophthalmology apps available on the Apple® iTunes® Store with specific attention paid to the involvement of medical professionals in app development. These findings will be compared to those previously published to determine whether there has been a change in the quality of app development over recent years. This is a topic of significance given the recognised importance of evidence-based practice, and the potential for poor quality, or unproven technologies to undermine this.14

Materials and methods

The Apple® iTunes® Store was searched on Saturday 17 March 2018 to identify ophthalmology related apps. Where appropriate, this study has adopted some of the methodology used previously by Cheng et al.7 in order to facilitate comparisons between the two reports.

Inclusion criteria

Apps were considered for inclusion provided they were returned using the search terms ‘ophthalmology,’ and ‘ophthalmologist’. Additionally, the Apple iTunes Store was searched using terms derived from common eye disorders as outlined by the Centers for Disease Control and Prevention15 including ‘refractive’, ‘macular degeneration’, ‘cataract’, ‘diabetic retinopathy’, ‘glaucoma’, ‘amblyopia’, and ‘strabismus.’

Exclusion criteria

Apps relating to fields other than human ophthalmology such as veterinary ophthalmology or the physics of light were excluded. Apps were also excluded where the primary purpose was to promote a particular practitioner, conference, institution or product. Similarly, ‘demo’ or ‘lite’ versions of apps were excluded.

Data collection and statistical analysis

The following data were collected within the Apple® iTunes® Store based on information provided in the app product description; app name, developer, target audience, description of app function, category of app, cost, iTunes® rating, documentation of medical involvement in app development, year first published or copyright year, and size of the app in megabytes (MB). Professional involvement was defined as clear documentation of medical professional involvement or reputable institutional involvement such as that by a university or hospital in app development. Individual medical practitioners did not need to be identified in order to satisfy this criterion. Information was not sought from external websites, via contacting app developers or within the apps themselves. The data were analysed using descriptive statistics in Excel (Microsoft, Redmond WA).

Ethics

This research was conducted in accordance with the relevant ethical guidelines. No human participants were involved.

Results

A total of 152 ophthalmology themed apps were identified with the above search terms. Apps were categorised into 11 categories according to their primary function in addition to a miscellaneous category (Fig. 1).

jmtm.7.2.1f1.jpg

Figure 1: Categories of ophthalmology applications and their relative distributions

Eleven apps (7.2%) were aimed at providing educational material to all eye-care professionals (ophthalmologists and non-ophthalmologists) and included atlases and written reference material. Five (3.3%) apps were aimed at providing educational material to non-ophthalmology healthcare professionals and included flash cards and quizzes. Eleven (7.2%) apps provided educational material aimed at ophthalmologists specifically and primarily included written reference material. Six (3.9%) apps were electronic versions of academic journals. Eleven (7.2%) apps provided patient education including information delivered in written and multimedia formats. Furthermore, a number of apps provided ophthalmologists with images to be used for patient education such as in the setting of pre-operative counselling. Thirty-seven (24.3%) apps were clinical examination tools and included visual acuity charts, Amsler grids and colour vision testing plates. Twenty (13.2%) apps were clinical calculators of various types including toric and non-toric intraocular lens calculators, glaucoma risk calculators, and visual acuity converters.

Twenty-one (13.8%) apps provided treatment for amblyopia and strabismus through games or visual tasks. Seven (4.6%) apps functioned as low vision aids by providing screen magnification or allowing users to change the display colour scheme to better suit those with colour vision deficits. Five (3.3%) apps were aimed at medication compliance, all of which were eye drop reminders. Sixteen (10.5%) apps were categorised under miscellaneous. Apps in this category included an operator simulator, ophthalmology media, clinical administration, social media and telehealth.

The apps identified on the iTunes® Store were aimed at 4 different audiences. Forty-nine (32.3%) apps were targeted at ophthalmologists, while 5 (3.3%) and 46 (30.3%) were targeted at non-ophthalmology eye care professionals and eye care professionals (ophthalmologists and non-ophthalmologists), respectively. Fifty-two (34.2%) apps were targeted at patients.

Ratings

Forty-two (27.6%) apps had five or more user ratings resulting in them having an overall rating on the iTunes® Store. The mean rating amongst these apps was 3.4 stars. In contrast, 110 (72.4%) apps did not have an average user rating provided as they had been rated less than 5 times.

Medical professional involvement

In total, 36 (23.7%) apps had clearly documented medical involvement, or were developed by a reputable organisation such as a hospital or university. There were 34 (22.4%) apps that were assumed to have medical or professional input into their development because of their content or presentation, however they did not explicitly state this. A total of 82 (53.6%) apps had no professional involvement in their app development (Tab. 1).

Table 1: Professional involvement in app development by category of app

Year of publication

The number of apps produced each year from 2009 to 2018 (inclusive) was; 3 (2.0%), 8 (5.3%), 15 (9.9%), 10 (6.6%), 15 (9.9%), 18 (11.8%), 29 (19.1%), 20 (13.2%), 23 (15.1%) and 11 (7.2%) (Fig. 2). The 2018 figure of 11 represents the number of apps produced until 17 March 2018 when the search was conducted.

jmtm.7.2.1f2.jpg

Figure 2: Number of ophthalmology themed apps by year of publication or copyright

Price

The mean and median price of apps was USD$5.25 and $USD0.00, respectively. The price of apps ranged from USD$0.00 – USD$99.99. Eighty-nine (58.6%) apps were free while 8 (5.3%), 11 (7.2%), 7 (4.6%), 19 (12.5%) and 19 (12.5%) apps were USD$0.99, USD$1.99, USD$2.99, USD$3.00 – USD$10.00 and >USD$10.00 respectively.

Discussion

This report provides an update on the involvement of medical professionals in the development of ophthalmology apps available through the Apple® iTunes® Store. A similar report published in 2014 identified a total of 182 ophthalmology themed apps compared to 152 identified in this report,7 however significantly broader search terms were used in this previous study. As such, these results likely confirm that there are an increasing number of ophthalmology apps available. This is supported by the significant increase in number of ophthalmology apps released each year. While three apps were released in all of 2009, 11 apps have already been released as of 17 March 2018 highlighting the rapid growth in ophthalmology themed iPhone® apps over the past decade.

A broader number of app categories were identified in this report compared to those identified in previous studies.7 Examples of these new categories include low vision aids, those targeting medication compliance in the form of eye drop reminders and apps that provide treatment for strabismus and amblyopia.

Clearly documented professional involvement or clear documentation of reputable institution involvement in app development was low, with only 23.7% of apps fulfilling these criteria. These findings are considerably lower than figures quoted in previous studies.7 This is especially concerning given the very low standard required to meet these criteria. For example, merely stating that there was doctor involvement was sufficient with no requirement to provide evidence for these claims. Additionally, simply having medical involvement in app development does not in any way validate an app against non-iPhone® standards. It is not within the scope of this report to assess the validity of all available apps however. When combined with those apps that were assumed to have professional involvement this figure rose to 46.1%.

While a lack of professional involvement in some categories such as eye drop alarms may be benign, in other categories of apps it may be dangerous. For example, almost 86% of apps that aimed to provide ‘lazy eye training’ in the setting of amblyopia and strabismus had no professional involvement in their development. These apps primarily consisted of games and superficially they may appear harmless, however they may represent an opportunity cost and deny patients of time spent performing proven treatments. This highlights the need to validate these apps to avoid adverse outcomes. Additionally, apps that provide visual assessment tools such as visual acuity or colour vision testing may provide clinicians and patients with false information if improperly designed.

Such limitations have already been identified within the literature. A 2015 report by Perera et al. investigating the validity of iPhone® based visual acuity charts failed to identify a single app of sufficient accuracy for clinical use16 while discrepancies between iPhone® based, and standard Ishihara charts have also been documented.17 These findings are particularly concerning given that clinical examination apps account for approximately one-quarter of the app market and have the potential to directly lead to clinical errors and adverse outcomes.

While the large number of free apps available may seem beneficial, it may have the effect of promoting the development of poor quality apps due to lower standards expected and tolerated by users. Additionally, the large number of apps aimed at non-ophthalmologists may also promote poor development given that this target audience is likely to lack the expertise needed to critically appraise the technology.

These findings are a significant concern given the growing prevalence and influence of smartphone technology in medicine and ophthalmology.25 With the exception of a few, current smartphone apps are poorly designed, lack evidence to support their use and as such, the technology is not reaching its full clinical potential. Despite this, it seems highly unlikely that ophthalmology based smartphone technology will not continue to grow and offer an ever increasing range of functions. As such, it is incumbent on clinicians to promote high-quality, evidence-based apps where possible in order to derive maximum benefit from this technology, whilst avoiding the inherent pitfalls.

Conclusion

This report provides and an up to date review on the quality of ophthalmology iPhone® app development with the results highlighting the low level of professional involvement in this process. This is concerning given the growing prevalence of these technologies and their enormous potential. It is therefore incumbent on clinicians to be informed about the applications they use and promote high quality applications developed with professional expertise.

References

1. BinDhim NF, Freeman B, Trevena L. Pro-smoking apps for smartphones: the latest vehicle for the tobacco industry? British Medical Journal. 2012;23(1):e4[1–8].

2. Mosa AS, Yoo I, Sheets L. A systematic review of healthcare applications for smart phones. BMC Med Inform Decis Mak. 2012;12(67).

3. Epocrates. 2013 mobile trends report [Available from: http://www.epocrates.com/oldsite/statistics/2013 Epocrates Mobile Trends Report_FINAL.pdf.

4. Kulendran M, Lim M, Laws G, Chow A, Nehme J, Darzi A, et al. Surgical Smartphone Applications Across Different Platforms: Their Evolution, Uses, and Users. Surgical Innovation. 2014;21(4):427–40.

5. BinDhim NF, Trevena L. There’s an App for That: A Guide for Healthcare Practitioners and Researchers on Smartphone Technology. Online Journal of Public Health Informatics. 2015;7(2):e218–5.

6. Zvornicanin E, Zvornicanin J, Hadziefendic B. The Use of Smart Phones in Ophthalmology. Acta Inform Med. 2014;22(3):206–9.

7. Cheng NM, Chakrabarti R, Kam JK. iPhone applications for eye care professionals: a review of current capabilities and concerns. Telemed J E Health. 2014;20(4):385–7.

8. Bastawrous A, Cheeseman RC, Kumar A. iPhones for eye surgeons. Eye. 2012;26:343–54.

9. Grisolia ABD, Abalem MF, Lu Y, Aoki L, Matayoshi S. Teleophthalmology: where are we now? Arq Bras Oftalmol. 2017;80(6):401–5.

10. Ribeiro AG, Rodrigues RA, Guerreiro AM, Regatieri CV. A teleophthalmology system for the diagnosis of ocular urgency in remote areas of Brazil. Arq Bras Oftalmol. 2014;77(4):214–8.

11. Abroms LC, Padmanabhan N, Thaweethai L, Phillips T. iPhone Apps for Smoking Cessation: A Content Analysis. American Journal of Preventative Medicine. 2010;40:279–85.

12. Gan SK-E, Koshy C, Nguyen P-V, Haw Y-X. An overview of clinically and healthcare related apps in Google and Apple app stores: connecting patients, drugs, and clinicians. Scientific Phone Apps and Mobile Devices. 2016;2(8).

13. BinDhim NF, Trevena L. Health-related smartphone apps: regulations, safety, privacy and quality. BMJ Innovations. 2015;1(2).

14. Birbeck GL, Wiysonge CS, Mills EJ, Frenk JJ, Zhou X-N, Jha P. Global health: the importance of evidence-based medicine. BMC Medicine. 2013;11(223).

15. Centers for Disease Control and Prevention. Common Eye Disorders United States of America: CDC; 2015 [Available from: http://www.cdc.gov/visionhealth/basics/ced/index.html.

16. Perera C, Chakrabarti R, Islam FMA, Crowston J. The Eye Phone Study: reliability and accuracy of assessing Snellen visual acuity using smartphone technology. Eye (Lond). 2015;29(7):888–94.

17. Sorkin N, Rosenblatt A, Cohen E, Ohana O, Stolovitch C, Dotan G. Comparison of Ishihara Booklet with Color Vision Smartphone Applications. Optometry and Vision Science. 2016;93(7):667–72.

Medical Students’ Use of and Attitudes Towards Medical Applications

Posted on Dec 20, 2012 in Articles, Original Article | 0 comments


Dr Nicole Koehler PhD1, Dr Kaihan Yao MBBS2, Dr Olga Vujovic MBBS3,
Prof Christine McMenamin PhD1
1Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia, 2Medical Workforce Unit, Southern Health, Melbourne, Australia, 3Department of Infectious Diseases, The Alfred, Melbourne, Australia,

Corresponding Author: Nicole.Koehler@monash.edu
Journal MTM 1:4:16-21, 2012
DOI:10.7309/jmtm.73


Background/Aims: With the emergence of new technology (e.g., mobile device applications commonly known as “apps”) it is important to establish whether students have access to new technology and their attitudes towards its use prior to its implementation within a medical curriculum.  The present study examined medical students’ ownership of mobile phones with application support (i.e., smartphones), and their use of and attitudes towards medical applications.

Methods: All Monash University medical students in 2011 were invited to complete an anonymous online survey regarding mobile phones and medical applications.

Results: A total of 594 medical students participated in the study.  All students owned a mobile phone with 77% of them having a smartphone.  Seventy-six per cent of students with smartphones used medical applications.  Generally students had positive attitudes towards using medical applications.  The majority of students with mobile phones without application support would be prepared to obtain such a device to enable them to access medical applications.

Conclusion: Given students’ positive attitudes toward medical applications; this study suggests that these devices could play a more significant role within medical education.

An Empirical Review of the Top 500 Medical Apps in a European Android Market

Posted on Dec 21, 2012 in Articles, Original Article | 0 comments


Dr Vivian Obiodu MD1,2,Emeka Obiodu MSc3
1East and North Hertfordshire NHS Trust, England, UK, 2Institute of Orthopaedics and Musculoskeletal Science, University College London, UK, 3Warwick Business School, Coventry, UK
Corresponding Author: obiodu@doctors.org.uk
Journal MTM 1:4:22-37, 2012
DOI:10.7309/jmtm.74


Background/Aims: Mobile phone apps are increasingly playing a role in healthcare delivery and the training of healthcare professionals. According to Research2guidiance, the market for such medical apps reached US$718 million in 2011. The market for mobile applications for Apple and Google dominate the app scene, as they contain over 500,000 apps each.This research reviews the 500 top medical apps in a specific Android market as it seeks to explore the availability, popularity, and prices of apps designed for different medical specialties and uses.

Methods: The Android market was chosen because it provides better download statistics and its unregulated nature is a good indicator for good and bad apps. The Italian Android market was chosen as it approximates a closed healthcare market.

Results: The results show that apps designed for public education, to be used as health diaries, or for healthcare practitioners to make calculations were the most popular. While mean number of downloads for the 500 apps was 74,471, the median is closer to 3,000 downloads per app, reflecting how a few popular apps have skewed the mean. The median number of reviews for each app was 16, the median rating was 4.1/5 and the data shows most apps (77%) are free.

Conclusion: This review of the top, consecutive 500 ‘medical’ apps in the Italian Android market shows that a majority of the apps are designed for healthcare professionals. On the average, a typical medical app will be downloaded 3,000 times, reviewed 16 times, rated 4.1/5 and given away for free. While there are many benefits to society from medical apps, there are also concerns so as not to endanger healthcare delivery or jeopardize public health and safety.

The Use of Generic Mobile Devices in Operating Proprietary Medical Devices – Example from a Case Report of Vagal Nerve Stimulation Therapy

Posted on Dec 20, 2012 in Articles, Original Article | 0 comments


Brian Chee1

1Northern Health Clinical School, The University of Melbourne, Melbourne, Australia

b.chee@student.unimelb.edu.au
Journal MTM 1:4:38-41, 2012
DOI:10.7309/jmtm.81


Introduction

This article begins with a case report illustrating the use of a generic mobile device in operating a proprietary medical device – the vagal nerve stimulation (VNS) therapy, used in the treatment of refractory epilepsy.

Case

Mr AP is a 20-year old man with an intellectual disability who suffers from intractable epilepsy since 8 years of age. He experiences brief atonic events very frequently. In addition to this, his seizure pattern consists of more prolonged generalised tonic-clonic seizures 2 – 3 times per week, and awake tonic events 2 – 4 times per week.

Despite trialling multiple anti-epileptic medications, his seizures remain poorly controlled and was progressively worsening over the past few years. His latest regimen was a combination of sodium valproate 550 mg, clonazepam 0.5 mg twice daily, and phenytoin 260 mg. An MRI scan showed generalised cerebral atrophy and peri-ventricular heteropia without any surgically amenable lesions. Hence, his treating neurologist agreed to a trial of vagal nerve stimulation therapy. The procedure was carried out by the Austin Hospital neurosurgical team under general anaesthesia.

Vagal Nerve Stimulation

Vagal nerve stimulation (VNS) is recognised as an adjunctive therapy for treatment-resistant epilepsy, used in more than 60,000 patients worldwide 1. The instrument is currently produced solely by Cyberonics, Inc. and consists of a pulse generator, which is placed in a surgically-created subcutaneous pocket in the left upper chest or anterior axillary fold. The generator delivers stimulation to the afferent fibres of the left vagus nerve via an electrode wrapped around the nerve in the cervical region. Though the exact mechanism of anti-epileptic action of VNS is not fully understood, it is likely to be related to effects on the thalamus and other limbic structures 2. VNS has been shown to result in median seizure reduction rates of approximately 45% at 12 months, with some evidence of continued improvement in seizure control over time 2-5. Greater seizure control is achieved on higher stimulation settings, but this also increases the risks of side effects from the therapy. The side effects are mainly stimulation-related, including dysphonia (up to 66% of patients), cough (45%), throat pain (28%), and headaches (24%). They are generally well-tolerated, tend to improve over time, and mostly resolve with decreased intensity of stimulation 3, 6.

VNS – Procedure

VNS therapy consists of a number of components including: (1) pulse generator, (2) electrode leads, (3) programming wand, and (4) handheld computer with installed software.

The pulse generator (Pulse Model 102 Generator) is an implantable, multi-programmable generator that is housed in a titanium case and powered by a single battery. It is responsible for delivering stimulating electric currents via a bipolar electrical lead (Model 302) to the vagus nerve (see Fig 1).


Figure 1: VNS therapy device 7

Once implanted, the pulse generator is programmed by the Model 250 Programming Software, which is loaded onto either a laptop or handheld computer dedicated only to programming the VNS Therapy System. A programming wand (NeuroCybernetic Prosthesis Programming Wand, Model 201) connected to the handheld computer via a cable serves as the interface with which to interrogate the pulse generator and modify stimulation parameters 6 (see Fig 2).


Figure 2: Programming of the VNS therapy device using the Programming Wand and handheld computer 8

In this case, the computer used was a Dell Axim X5 handheld computer, a member of Dell’s line of Windows Mobile-powered Pocket PC devices with a retail price starting at $279. As it has no intrinsic Internet connectivity, software updating is performed via compact flash 9.

Discussion

Increasingly, companies are using general-purpose mobile or handheld devices in the market to operate their medical devices. The versatility of generic mobile devices, as reflected by the number and diversity of mobile applications or “apps” available in the technology market 10, allows them to function as control tools for proprietary medical devices, given the proper software to connect to the medical devices. There are two main advantages to this approach, rather than creating custom-built control devices for new medical products.

Firstly, it reduces cost to the company. It is likely to be cheaper to reprogram an existing mobile device for the use of a specialist purpose such as VNS therapy than to design a new de-novo device. There is a wide range of low cost mobile devices in the market today with sufficient capabilities to be used in operating medical devices, such as the IPod Touch (RRP starting at $219), and various Android-based phones from companies such as HTC (One V $204, Desire $264), Samsung (Galaxy Ace 2 $240), Nokia (Lumia 800 $260), and Sony Ericson (Xperia $263) (www.shopbot.com.au).

More importantly, given clinician familiarity with current mobile technology especially smartphones 11, producing medical devices that can be operated by existing smartphones can increase the usability of the device and will allow more clinicians to adopt it into clinical practice.  Many such medical devices are already emerging in the market. Health-monitoring devices that interface with smartphones, for instance, are gaining ground in the routine provision of healthcare. These include blood pressure monitors, blood sugar level (BSL) monitors 12, and foetal monitors 13. Other mobile-equivalents of traditional devices are also making inroads into medical practice including digital stethoscopes 14, mobile ultrasound probes 15, eye assessment tools 16, and mobile electro-cardiograms (ECGs) 17. The use of familiar mobile platforms to operate these medical devices provides clinicians with the ease of access to utilise these emerging technologies.

The disadvantages to this option, however, also need to be carefully considered. The use of reprogrammed mobile devices in medicine is dependent on a range of technical issues, such as software stability, compatibility, and device connectivity. For example, the handheld computer used in the VNS therapy failed once during the procedure due to software-related issues. While this did not result in significant adverse outcomes for either the surgery or the patient, the failure of a device during a higher risk or time-critical procedure can be of significant concern.

Another consideration is that there may be greater cost savings to the company if purpose-built computer devices are produced at scale, especially for more widely used medical products. For example, integrating and streamlining software and hardware production can be a cheaper option than acquiring the components separately. Prices of mobile devices in the market often include additional costs for marketing, advertising, postage and handling. Softwares that are developed for existing mobile platforms may require additional testing for device compatibility and stability, thus potentially increasing the production time and cost.

Connectivity

Connectivity is also another important issue to consider in the use of mobile technologies to operate medical devices.


Figure 3: Cable connection between the Dell Axim X5 to the programming wand

The handheld computer in the VNS Therapy was connected to the programming wand via a cable. The obvious downside of this approach is that it adds bulk to the device, creates potentials for safety hazards, and also becomes potential points for connection failure (see Fig 3). The lack of Internet connectivity also makes it more difficult to perform software updates, and the collation of data for monitoring and auditing purposes is potentially more cumbersome.

The upside of the lack of connectivity is that there is greater device security. There is increasing security concerns of wireless medical devices in terms of data and patient safety. Recent safety issues have been raised around vulnerabilities in such devices, allowing them to be “hacked”, and even controlled remotely by those with sufficient technical skill and proficiency.  This can prove disastrous when sensitive devices such as insulin pumps and cardiac pacemakers are involved 18, 19. The added benefits of having Internet connectivity obviously need to be balanced out with potential security risks.

Conclusion

In summary, there is an emerging market for medical devices operated by existing mobile devices. There are advantages to the healthcare sector in terms of familiarity with the mobile devices being used. Concurrently, there are also potential issues that need to be addressed in terms of technical performance and security risks.

References

1.  Englot DJ, Chang EF, Auguste KI. Efficacy of vagus nerve stimulation for epilepsy by patient age, epilepsy duration, and seizure type. Neurosurgery Clinics of North America. 2011;22(4):443. 

2. Ben Menachem E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurology. 2002;1(8):477. 

3. Schachter SC. Vagus nerve stimulation therapy summary Five years after FDA approval. Neurology. 2002;59(6 suppl 4):S15-S29. 

4. Amar AP. Vagus nerve stimulation therapy after failed cranial surgery for intractable epilepsy: results from the vagus nerve stimulation therapy patient outcome registry. Neurosurgery. 2004;55(5):1086. 

5.  Uthman B, Reichl A, Dean J, Eisenschenk S, Gilmore R, Reid S, et al. Effectiveness of vagus nerve stimulation in epilepsy patients A 12-year observation. Neurology. 2004;63(6):1124-6. 

6. Cyberonics. Physician’s Manual: VNS Therapy System. Houston, Texas: Cyberonics, Inc; 2010.

7. Cyberonics. VNS Therapy for Epilepsy Basics: How does VNS Therapy work?  2012  [cited 2012 Sep 20]; Available from: http://us.cyberonics.com/en/vns-therapy-for-epilepsy/patients-and-families/basics/how-does-vns-therapy-work

8. Cyberonics. VNS Therapy: Products.  2012  [cited 2012 Sep 20]; Available from: http://us.cyberonics.com/en/vns-therapy-for-epilepsy/healthcare-professionals/vns-therapy/about-products

9. Dell Axim X5 Basic and Advanced Pocket PCs.  2002  [cited 2012 Sep 25]; Available from: http://www.mobiletechreview.com/dell_axim_x5.htm

10. Brian M. Smartphone apps set to surpass the 1 million mark next week.  2011  [cited 2012 Nov 30]; Available from: http://thenextweb.com/mobile/2011/12/02/smartphone-apps-set-to-surpass-the-1-million-mark-next-week/?&_suid=1354274548732011648659314960241

11.Manhattan Research. 75 percent of U.S. Physicians own some form of Apple device.  2011  [cited 2012 Sep 20]; Available from:

12.Melanson D. Sanofi-Aventis debuts iBGStar blood glucose monitor for iPhone.  2010  [cited 2012 Sep 29]; Available from: http://www.engadget.com/2010/09/21/sanofi-aventis-debuts-ibgstar-blood-glucose-meter-for-iphone/

13.Ostrovsky G. The AirStrip OB(R) for wireless fetal heart rate monitoring.  2006  [cited 2012 Sep 29]; Available from: http://medgadget.com/2006/02/the_airstrip_ob_1.html

14. Ostrovsky G. Thinklabs iPhone app pairs up with electronic stethoscope.  2010  [cited 2012 Sep 29]; Available from: http://medgadget.com/2010/02/thinklabs_iphone_app_pairs_up_with

_electronic_stethoscope.html

15. Moore E. Smartphone ultrasound device hits market.  2011  [cited 2012 Sep 29]; Available from: http://news.cnet.com/8301-27083_3-20118706-247/smartphone-ultrasound-device-hits-market/

16. Bastawrous A, Leak C, Howard F, Kumar V. Validation of near eye tool for refractive assessment (NETRA) – Pilot study. Journal of Mobile Technology in Medicine. 2012;1(3):6-16. 

17. Nafziger B. New cell phone takes ECG readings.  2010  [cited 2012 Sep 29]; Available from: http://www.dotmed.com/news/story/13886

18. Leavitt N. Researchers fight to keep implanted medical devices safe from hackers. Computer. 2010;43(8):11-4. 

19. Robertson J. Hacker shows off lethal attack by controlling wireless medical device.  2012  [cited 2012 9 Sep]; Available from: http://go.bloomberg.com/tech-blog/2012-02-29-hacker-shows-off-lethal-attack-by-controlling-wireless-medical-device/


The Legal Perspective of mHealth in the United States

Posted on Dec 20, 2012 in Articles, Original Article | 0 comments


William Garvin1

1Legal Counsel, Buchanan Ingersoll and Rooney PC, Attorneys and Government Relations Professionals, USA
Corresponding Author: william.garvin@bipc.com
Journal MTM 1:4:42-45, 2012
DOI:10.7309/jmtm.82


The first step is to conduct a critical appraisal of existing literature relevant to the research question

The rapid rise of mobile smartphones has brought with it a proliferation of new software applications (“apps”) that assist the owner with a vast array of new information and tools.  Those in the medical community have seen a dramatic rise in apps designed to aid them in their medical practice, and these mobile medical apps have the potential to revolutionize the practice of medicine.[1]

Nevertheless, the Food and Drug Administration (“FDA”) has not yet resolved how it intends to regulate all mobile medical apps.  This regulatory uncertainty impedes the development of innovate medical apps and slows the adoption of useful apps by the medical community.  Physicians may even be scared to utilize these apps to their fullest capability due to a fear that these medical apps are unreliable and have not been vetted.

Satisfying Clinical Research Guidance and Regulations for mHealth Technologies

Posted on Dec 3, 2012 in Conference | 0 comments


Brian Moyer1, Christopher Whalen1, Lisa Hoopengardner2, Yentram Huyen3, Katie Watkins2, Michael Holdsworth1, Jiwen Sun4, Kevin Newell2, Susan Vogel5, Ruma Das6, Alex Rosenthal3, Michael Tartakovsky3
1Research Data and Communication Technologies, Inc,
USA;  2Clinical Research Directorate/Clinical Monitoring Research
Program, SAIC-Frederick, Inc., Frederick National Laboratory for
Cancer Research, Maryland, USA; 3Office of Cyber
Infrastructure and Computational Biology, National Institute of
Allergy and Infectious Diseases, National Institutes of Health, USA; 4Dell Services, Federal Government, USA; 5Regulatory Compliance and Human
Subjects Protection Branch, Division of Clinical Research, National
Allergy and Infectious Disease, National Institute of Health, USA; 6Dell-PSGS – Efficiency
System Technology Inc. USA

Journal MTM 1:4S:33, 2012
DOI:10.7309/jmtm.55


Abstract

The Office of Cyber Infrastructure and Computational Biology (OCICB) of the National Institute of Allergy and Infectious Diseases (NIAID) at the NIH has been developing a solution that complies with current guidance frameworks and regulatory requirements while leveraging the potentials offered by mHealth technologies for data collection. OCICB has designed an mHealth solution that maps to the paper processes developed over the past century for clinical research. We designed the system for use in regions of low to middle-income countries where the patients often have no other clinical record. For our pilot, we selected a natural history study that does not have the same regulatory requirements as an Investigational New Drug (IND) study. We retained our existing paper-based clinical data capture management system in order to compare quality control reports between paper-based and mobile electronic capture methods. The solution complies with regulatory frameworks and requirements such as Good Clinical Practices and 21 CFR Part 11, which requires full audit trails of the data collection process at the source and the validation stages. It also provides the capacity for workflows that support the data validation process within the field research framework. We expect to show that the accuracy of data collection improves using mobile source data collection. This will reduce the time and cost of validating the collected data before final analysis for clinical research while maintaining the regulatory framework that protects patient interests. The solution will further provide clinical monitors with the ability to remotely access the source data and thus reduce the cost of travel for monitoring as well as reducing the impact on patients due to mistakes made while entering the data.